기타 스플라인들
Kochanek–Bartels (KB) Splines
Same as a Cardinal spline (includes Tension), but with two extra tweaks (usually set on the entire spline).
Bias (from -1 to +1):
A zero bias leaves the velocity vector alone
A positive bias rotates the velocity vector to be more aligned with the point BEFORE this point
A negative bias rotates the velocity vector to be more aligned with the point AFTER this point
Continuity (from -1 to +1):
A zero continuity leaves the velocity vector alone
A positive continuity “poofs out” the corners
A negative continuity “sucks in / squares off” corners
역주) Kochanek–Bartels (KB) Splines는 저도 정확히 이해를 못해서 원문 그대로 올립니다.
B-Splines
Stands for “basis spline”. Just a generalization of Bezier splines. The basic idea: At any given time, P(t) is a weighted-average blend of 2, 3, 4, or more points in its “neighborhood”. Equations are usually given in terms of the blend weights for each of the nearby points based on where t is at.
역주) B-Splines는 저도 정확히 이해를 못해서 원문 그대로 올립니다.
Splines as filtering/easing functions
스플라인을 이용하여 "easing" 또는 "filtering"함수를 만들 수 있습니다.
예:
"스무스한 시작"을 위한 함수( )는 A지점과 B지점이 겹쳐져 있는 2차 베지어 곡선과 같습니다.
"스무스한 종료"를 위한 함수( )는 C지점과 B지점이 겹쳐져 있는 2차 베지어 곡선과 같습니다.
"시작과 끝이 모두 스무스한" 함수( )는 B=A, C=D인 3차 베지어 곡선과 같습니다.
역주) 아래 사이트에 가면 베지어 곡선을 직접 시뮬레이션 해볼 수 있습니다. https://www.jasondavies.com/animated-bezier/
Curved Surfaces
이 이야기의 범위를 벗어나지만 기본적으로 스플라인을 교차하면 2D곡면을 만들 수 있습니다.
Last updated